STUDY MODULE D	ESCRIPTION FORM	
Name of the module/subject Structural Mechanics		Code 1010115121010110272
Field of study	Profile of study (general academic, practical)	Year /Semester
Civil Engineering Extramural Second-cycle	general academic	1/2
Elective path/specialty Structural Engineering	Subject offered in: Polish	Course (compulsory, elective) obligatory
Cycle of study:	Form of study (full-time,part-time)	
Second-cycle studies	part-time	
No. of hours	I.	No. of credits
Lecture: 20 Classes: - Laboratory: -	Project/seminars:	10 4
Status of the course in the study program (Basic, major, other) (university-wide,		eld)
major	from field	
Education areas and fields of science and art		ECTS distribution (number and %)
technical sciences		4 100%

Responsible for subject / lecturer:

Michał Guminiak, dr inż. email: michal.guminiak@put.poznan.pl tel. +48 61 665 2475 Faculty of Civil and Environmental Engineering Piotrowo 5 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Knowledge 1.Student knows the analytical method for calculating internal forces and displacements in the statically determinate and indeterminate bars, trusses, beams and frames flat systems.	
		2. Student has a basic knowledge of strut buckling and loss of stability of beam and frame flat systems.	
		3. Student has knowledge of the state of stress and strain in the selected point of cross section of structures.	
2	Skills	Student can calculate internal forces and displacement in the statically determinate and indeterminate bar, beam and frame flat systems.	
		2. Student can calculate stress and strain in the selected point of cross section of structure.	
3	Social competencies	Student is responsible for brought a basic knowledge of general mechanics and strength of materials.	

Assumptions and objectives of the course:

Getting acquainted with analysis by matrix methods of statics, dynamics and stability of flat bars, trusses, beams and frames and static analysis of string structures and shell.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Foundations of calculating of the steel frames with susceptible nodes. [K_W03]
- 2. Foundations of formation of string constructions and their non-linear behavior. [K_W03]
- 3. Foundations of formation and work of shells in state of membrane and bending. [K_W03]

Skills:

- 1. Calculate the internal forces in the frames with susceptible nodes. [K_U04]
- 2. Apply Newton [K_U04]
- 3. Calculate the internal forces in shells in state of bending using engineering approach. [K_U04]

Social competencies:

- 1. Student is responsible for the correctness of the calculations undertaken. $[K_K02]$
- 2. Student can describe performed calculations and draw conclusions from their results. [K_K02]
- 3. The student is aware of the need to systematically supplement and extend their knowledge. [K_K10]

Faculty of Civil and Environmental Engineering

Assessment methods of study outcomes

- 1. Written and oral examination (includes two semesters).
- 2. Two exercises for individual design solutions.

Course description

- 1. Analysis of bending of steel frames with susceptible nodes.
- 2. Analysis of axially symmetrical shells in membrane and bending state using analytical methods and taking into account the beam edge and elastic continuous fundations.
- 3. Static analysis of string constructions taking into account the geometric nonlinearity, the problems of shaping and implementation (additionally).

Basic bibliography:

- 1. Wybrane zagadnienia zaawansowanej mechaniki budowli, P. Litewka, R. Sygulski, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012.
- 2. Mechanika konstrukcji prętowych w ujęciu macierzowym, M. Guminiak, J. Rakowski, Wydawnictwo Politechniki Poznańskiej, Poznań, 2012.

Additional bibliography:

- 1. Mechanika budowli ujęcie komputerowe, t. 1, 2 i 3, Z. Waszczyszyn i in., Arkady, Warszawa, 1995.
- 2. Dźwigary powierzchniowe, K. Girkmann, Arkady, Warszawa 1957.
- 3. Preparation to the exam.

Result of average student's workload

Activity	Time (working hours)
Preparation of the first exercise design.	20
2. Preparation of the second exercise design.	20

Student's workload

Source of workload	hours	ECTS
Total workload	100	4
Contact hours	37	1
Practical activities	47	2